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● Understanding the space of “high-throughput” computing
● Abstractions and Execution  Models
● Case Study: ATLAS on Titan

○ Overview of PanDA
○ PanDA on Titan

● Case Study: Ensemble-based bio-molecular simulations

Outline



High-throughput Computing 

● High-throughput is:
○ When the workload is comprised of multiple tasks.
○ Workload of a single application or a single workflow or multiple workflows 

as part of a computational campaign 
○ Typically characterized by the number of tasks executed

● High-throughput computing can also have: 
○ Temporal dimension (e.g., minimise the time to execute tasks)
○ Concurrency dimension (e.g., maximise the number of  tasks executed)

● High-throughput computing is not:
○ Confined to single core (single node) tasks
○ Only embarrassingly parallel set of tasks



● Parameters that need to be understood:
● NT = Number of tasks
● NR = Number of resources
● ST = Size of each task (#cores)
●  tT  = Duration of each task 

(modulo performance of resource)
● NJ = Num. of jobs (land system scheduler)
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● Developed algorithm to exploit 
distributed task-level parallelism. 

● 2005-09: Tried running O(1000) 
simulations on many 
supercomputers. Did not work! 
Many reasons!

● Reverted running  parallel 
simulations, sequentially on 
single resources.

● Importance of MODELS of 
EXECUTION, i.e., reason which 
tasks go where and when?

NT = 1000, tT > 12hrs, ST = 128-256 cores 

Example of D-HTC of HPC tasks



Convergence

● Parameters that need to be understood:
● NT = Number of tasks
● NR = Number of resources
● ST = Size of each task (#cores)
●  tT  = Duration of each task 

(modulo performance of resource)
● NJ = Number of jobs (hit system scheduler)

● Convergence due to change of platform:
○ NR >  1, ST = 1

●  → NR = 1 (HPC), ST = 1 
○ D-HTC to HTC of HPC tasks (HT-HPC). 
○ Change in the number of NJ

NR = 1



Abstractions and Models of Adaptive Execution on 
Dynamical Resources 



● Supporting high-throughput 
computing requires abstraction and 
models at multiple levels

● Four Layers:

○ L4: Application 

○ L3: Workload Management (WLMS)

○ L2: Task Run-time (TRS)

○ L1: Resource Access Layer

● For L2: we discuss Pilot abstraction that 
has proven fundamental for HTC and 
show its generalization to HPC.

HTC: Requires Support at  Multiple Levels



● “.. a scheduling overlay which 
generalizes the reoccurring concept of 
utilizing a placeholder as a container 
for compute tasks”

● Decouples workload from resource 
management 

● Enables fine-grained “slicing and 
dicing” of resources 

● Tighter temporal control, advantages 
of application-level scheduling

● Build higher-level frameworks without 
explicit resource management

Pilot-Abstraction (P* Model)

12

● “P*: A Model of Pilot-Abstractions”, 8th IEEE 
International Conference on e-Science (2012)

● A Comprehensive Perspective on Pilot-Jobs 
http://arxiv.org/abs/1508.04180  (2015)
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AIMES Execution Model  

● Is there an execution model for dynamically 
federated heterogeneous resources that works 
independent of type of infrastructural dynamism 
and heterogeneity?

● AIMES Model of Execution:
○ Importance of dynamic integration of 

workload and resource information.
○ Execution strategy: Temporally ordered set 

of decisions that need to be made to execute 
a given workload.

● Conceptual models will → better implementation 
○ RADICAL-WLMS (implementing AIMES 

model and Pilots) supports uniform 
execution models over XSEDE and OSG!

Schematic of RADICAL-WLMS 
(implementation of AIMES model) approach to 
workload-resource integration: Evaluate 
workload requirements & resource capabilities, 
derive an execution strategy, and enact. 



XSEDE - HPC
-  ~10 supercomputers: ~15 PFLOP
-  ~10 storage facilities: ~100 PByte
-  shared allocation process & user support
-  tailored toward grand challenge applications (HPC)

Distributed CyberInfrastructure: XSEDE



OSG Connect/XSEDE-vcluster - HTC
-  ~100 sites, ~40,000 cores, ~1 PB    (2012)
-  exact composition very dynamic
-  only single core machines, loosely coupled
-  tailored towards high throughput (HTC)

Distributed CyberInfrastructure: OSG



ATLAS: PanDA WMS and HPC Resources Adoption 

http://arxiv.org/abs/1704.00978
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● 6 main subsystems:
○ PanDA Server (Run 1)
○ PanDA Pilot (Run 1)
○ JEDI (Run 2)
○ AutoPyFactory (Run 1)
○ PanDA Monitoring (Run 1)
○ Event Service (Run 2)

● Developed for 
○ HEP workloads and workflows
○ HTC on Grid infrastructures

● Task-based and job-based execution 
mode

● Support single researchers, research 
groups, ATLAS production workflows. 

Production and Distributed Analysis (PanDA)



● Cannot deploy PanDA Pilot on 
Titan’s worker nodes (WN)

● PanDA Brokers on Titan’s DTN

● MPI scripts wrap jobs’ payload

● AthenaMP on read-only NFS 
shared between DTN and WN

● Events on OLCF Lustre FS

PanDA on Titan



• ATLAS Detector Simulation 
integrated with Titan (OLCF)

• Titan has already  contributed a 
large fraction of computing 
resources for MC simulations
– Titan contributed 4.4% of total 

simulation time in February 2017.

ATLAS simulation time worldwide: February 2017



Understanding Backfill Slot Availability

● Efficiency: fraction of core-hours 
utilized by the PanDA Brokers to 
Titan’s total backfill availability.

● Mean BF availability: 691 worker 
nodes for 126 minutes.

● Up to 15K nodes for 30-100 minutes
● large margin of optimization



Static binding and sizing of tasks and jobs:
● Detector simulations of production ATLAS MC workflow
● 100 events per job (as opposed to 1000 for jobs on grid resources)
● 1 job; 1 WN; 16 AthenaMP; 100 events.

Benefits of implementing the pilot abstraction on Titan:

● Efficiency:
○ No assumption required about the number of events per simulation.
○ Jobs can be streamed to Titan when available.
○ Better walltime utilization via multiple execution generations on pilot(s).

● Workload heterogeneity:
○ No need of tailoring MPI scripts to the specifics of each type of workload.

● Resource heterogeneity:
○ No need of implementing tailored support for each HPC machine flavour.

Evolution of PanDA Deployment on Titan



● NGE behaves like a resource:
○ Exposes capabilities and 

availability acquired via pilots.
● Separation of concerns NGE 

independent from: 
○ PanDA server
○ Type of workload

PaNDA  and Next Generation Executor (NGE)



● ORTE: Open RunTime Environment
○ Isolated layer used by Open 

MPI to coordinate task layout
○ Runs a set of daemons over 

compute nodes
○ No ALPS concurrency limits

● Supports multiple tasks per node
○ Uses library calls instead of 

orterun processes
○ No central fork/exec limits
○ Shared network socket
○ (Hardly) no central file system 

interactions

NGE Agent: ORTE-LIB



● Each AthenaMP simulates 100 
events in the ATLAS detector.

● One instance of AthenaMP per 
Titan’s worker node; 16 Geant4 
simulators per node.

● The overhead grows with the 
number of units but its growth is 
less than linear.

Experiments: Weak Scalability



● Each AthenaMP simulates 100 
events in the ATLAS detector.

● Five sequential instances of 
AthenaMP per Titan’s worker node; 
16 Geant4 simulators per node.

● Stress NGE components by 
creating concurrency between 
starting and ending units.

● The growth of the overhead is still 
less than linear.

Experiments: Weak Scalability, Multiple Generation



● Each AthenaMP simulates 100 
events in the ATLAS detector.

● Each pilot is bounded with 2048 
units.

● Smaller the pilot size, larger the 
number of sequential AthenaMP 
instances that are run by the pilot. 

● The overhead remains constant 
while the pilot duration decreases. 

Experiments: Strong Scalability
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BPTI, 1ms MD ~3 months on Anton (Shaw 
et al, Science 2010)

New type of HTC: Bio-MD Simulations (BMS) 

● Convergence: Decompose  a traditional HPC 
problem into an HTC problem!

● Larger biological systems
○ Typically solved by weak scaling

● Long time scale problem
○ Typically solved by strong scaling 

● Gap between weak  and strong scaling 
capabilities will grow with “New” Moore’s Law.

● Need advances in Algorithms to address this gap
○ Scaling challenges are more than 

single-partition strong and weak scaling



● Many sampling problems formulated as 
ensemble methods/algorithms

● Ensemble members often interact. 
○ Not a “bag-of-tasks” abstraction.
○ Replica-exchange, Adaptive Markov 

State Models, Adaptive biasing...

● Different degrees and levels of coupling 
between ensembles members

● A HTC problem on HPC, but traditionally 
HPC optimized for single large job(s)!

The Power of Many: Ensemble Methods



● Ensemble-Member = task = Execution Unit
○ Multi-node, sub-node, MPI/non-MPI...
○ Simulation, Analysis, ..

● AIMES Execution Model
○ Support for heterogeneous tasks
○ Adaptive Workload: Tasks and/or relations 

between tasks changes, or unknown a priori.

● Multiple dimensions of scalability: 
○ Concurrency: O(10K) tasks
○ Task size: O(1)-O(1,000) cores
○ Launch: O(100+) tasks per second
○ Task duration: O(1)-O(10,000) seconds

RADICAL-Cybertools: Ensemble Toolkit (EnTK)



Many Gromacs on Titan: Close to linear scaling

● Almost perfect scaling for O(1000) 
● Ongoing work to support O(1000)-O(10,000) Gromacs currently.
● Need is for O(100,000). Challenges at multiple levels.



Experiments: ORTE-LIB



● Information management!
● Agent communication layer (ZMQ) has 

limited throughput
○ bulk messages 
○ separate message channels
○ code optimization

● Agent scheduler (node placement) 
scale well with number of cores
○ bulk operations 
○ better scheduling algorithms
○ code optimization

● Collecting complete jobs is just as hard 
as spawning new ones

Challenges of O(100K+) Concurrent Tasks



● PanDA deployment of Titan shows the potential of D-HTC at unprecedented 
scale and for production workload.

● NGE enables the generalization and optimization of PanDA deployment on the 
based of a unified conceptual framework.

● Traditional HTC and HPC distinctions are a by-product of specific 
cyberinfrastructure implementations; discussions around software is misleading!

● Demonstrate how abstractions, execution models and multi-level support unify 
HTC, D-HTC, HT-HPC and HPC under the same conceptual framework enabling:
○ Design and development of general-purpose middleware.
○ Management of workload and resource heterogeneity and dynamism
○ Analytical understanding of workload, middleware, and resource behavior.

Summary: 


